

CE EMC Test Report

Issued date: Oct. 14, 2019 Project No.: 19Q082903

F

Product: Ultra Short Throw Outdoor Portable LED Projector

Model: MGFU

Applicant : Elite Screens Visual & Sound Co., Ltd.

Address: 3F., No. 88, Wugong Rd., Xinzhuang Dist., New Taipei City 242, Taiwan (R.O.C.)

Report No: WD-EE-R-190581-B1

According to

 Draft ETSI EN 301489-1 V2.2.0 (2017-03)
 EN 61000-4-2: 2009

 Draft ETSI EN 301489-17 V3.2.0 (2017-03)
 EN 61000-4-3: 2006 + A1: 2008 + A2: 2010

 EN 55032: 2015 + AC: 2016, Class B
 EN 61000-4-3: 2016 + A1: 2008 + A2: 2010

 EN 61000-3-2: 2014
 EN 61000-4-4: 2012

 EN 61000-3-3: 2013
 EN 61000-4-6: 2014 + A1: 2017

 EN 61000-4-11: 2004 + A1: 2017

Authorized Signatory : _____ Robert Wang / Robert Wang

Wendell Industrial Co., Ltd Wendell Electrical Testing Lab.

Add: 6F/6F-1, No.188, Baoqiao Rd., Xindian Dist., New Taipei City 23145, Taiwan R.O.C.

Table of Contents

1 Cert	ification	7
1.1 Su	ummary of Test Result	8
2 Test	Configuration of Equipment Under Test	9
	est Facility	
	easurement Uncertainty	
2.2.1	Conducted Emission test	
2.2.1	Conducted Emission test	
2.2.2	Radiated Emission test	
2.2.3	Harmonics Current Measurement	
2.2.4	Voltage Fluctuation and Flicker Measurement	
2.2.6	Immunity Test	
3 Gene	eration Information	
	escription of EUT	
	escription of Test Modes	
	UT Operating Condition	
	escription of Support Unit	
	onfiguration of System Under Test	
	ssion Test	
	onducted Emission Measurement	
4.1.1	Limit of Conducted Emission Measurement	
4.1.2	Test Instrument	
4.1.3	Test Procedure.	
4.1.4 4.1.5	Deviation from Test Standard	
4.1.5	Test Setup Test Result	
4.1.0	Photographs of Test Configuration	
	onducted Emission at Telecommunication Ports Test	
	adiated Emission Measurement	
4.3.1 4.3.2	Limits of Radiated Emission Measurement Test Instrument	
4.3.2	Test Procedure	
4.3.4	Deviation from Test Standard	
4.3.4	Test Setup	
4.3.6	Test Result	
4.3.7	Photographs of Test Configuration	
4.4 Ha	armonics Current Measurement	. 37
4.4.1	Limits of Harmonics Current Measurement	. 37
4.4.2	Test Instrument	. 37
4.4.3	Test Procedure	. 38
4.4.4	Deviation from Test Standard	
4.4.5	Test Setup	
4.4.6	Test Result	
4.4.7	Photographs of Test Configuration	
4.5 Vo	oltage Fluctuation and Flicker Measurement	
4.5.1	Limit for Voltage Function and Flicker Measurement	
4.5.2	Test Instrument	. 42

		(
4.5.3	Test Procedure	
4.5.4	Deviation from Test Standard	
4.5.5	Test Setup	
4.5.6	Test Result	
4.5.7	Photographs of Test Configuration	
Imm	unity Test	
	andard Description	
	erformance Criteria	
5.3 E	lectrostatic Discharge (ESD)	
5.3.1	Test Specification	
5.3.2	Test Instrument	
5.3.3	Test Procedure	
5.3.4	Deviation from Test Standard	
5.3.5	Test Setup	
5.3.6	Test Result	
5.3.7	Photographs of Test Configuration	
	adiated, Radio-frequency, Electromagnetic Field Immunity Test (RS)	
5.4.1	Test Specification	
5.4.2	Test Instrument	
5.4.3	Test Procedure	
5.4.4	Deviation from Test Standard	
5.4.5	Test Setup	
5.4.6	Test Result	
5.4.7	Photographs of Test Configuration	
5.5 E	lectrical Fast Transient /Burst Immunity Test (EFT)	6
5.5.1	Test Specification	6
5.5.2	Test Instrument	6
5.5.3	Test Procedure	
5.5.4	Deviation from Test Standard	6
5.5.5	Test Setup	
5.5.6	Test Result	
5.5.7	Photographs of Test Configuration	
5.6 Sı	urge Immunity Test	70
5.6.1	Test Specification	7
5.6.2	Test Instrument	
5.6.3	Test Procedure	
5.6.4	Deviation from Test Standard	
5.6.5	Test Setup	
5.6.6	Test Result	
5.6.7	Photographs of Test Configuration	
5.7 C	ontinuous Conducted Disturbances (CS)	7
5.7.1	Test Specification	
5.7.2	Test Instrument	
5.7.3	Test Procedure	
5.7.4	Deviation from Test Standard	
	Test Setup	
5.7.5	1	
5.7.5 5.7.6 5.7.7	Test Result Photographs of Test Configuration	70

7	
	Γ

5.8.1	Test Specification	. 78
5.8.2	Test Instrument	
	Test Procedure	. 79
	Deviation from Test Standard	
5.8.5	Test Setup	. 79
5.8.6	Test Result	. 80
5.8.7	Photographs of Test Configuration	. 81

History of this test report

Report No.	Issue date	Description
WD-EE-R-190581-B0	Oct. 05, 2019	Initial Issue
WD-EE-R-190581-B1	Oct. 14, 2019	Changing brand name *Cancel report no.: WD-EE-R-190581-B0, Issued Date: Oct. 05, 2019

Declaration

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us.

History of supplementary report

Report No. Issue date		Description		
WD-EE-R-190581-B1	Oct. 14, 2019	Original report		

Declaration

This report is for your exclusive use. Any copying or replication of this report to or for any other person or entity, or use of our name or trademark, is permitted only with our prior written permission. This report sets forth our findings solely with respect to the test samples identified herein. The results set forth in this report are not indicative or representative of the quality or characteristics of the lot from which a test sample was taken or any similar or identical product unless specifically and expressly noted. Our report includes all of the tests requested by you and the results thereof based upon the information that you provided to us.

1 Certification

Product:	Ultra Short Throw Outdoor Portable LED Projector	
Brand Name:	MosicGO TM	
Model:	MGFU	
Applicant:	Elite Screens Visual & Sound Co., Ltd.	
Tested:	Sep. 05 ~ Oct. 01, 2019	
Standard:	Draft ETSI EN 301489-1 V2.2.0 (2017-03) Draft ETSI EN 301489-17 V3.2.0 (2017-03) EN 55032: 2015 + AC: 2016, Class B EN 61000-3-2: 2014 EN 61000-3-3: 2013 EN 61000-4-2: 2009 EN 61000-4-2: 2009 EN 61000-4-3: 2006 + A1: 2008 + A2: 2010 EN 61000-4-4: 2012 EN 61000-4-5: 2014 + A1: 2017 EN 61000-4-6: 2014 EN 61000-4-11: 2004 + A1: 2017	

The above equipment (Model: MGFU) has been tested by **Wendell Electrical Testing Lab.**, and found compliance with the requirement of the above standards. The test record, data evaluation and Equipment Under Test (EUT) configurations represented herein are true and accurate accounts of the measurements of the sample's EMC characteristics under the conditions specified in this report.

Please note that the measurement uncertainty are provided for informational purpose only and are not used in determining the Pass/Fail results.

1.1 Summary of Test Result

The EUT has been tested according to the following specifications:

Emission							
Standard Test Item		Limit Result		Remark			
	Conducted disturbance at mains terminals	Class B	Pass	Meets the requirements			
EN 55032	Conducted disturbance at telecommunication ports test	-	N/A	Without telecom port of the EUT			
	Radiated disturbance	Class B	Pass	Meets the requirements			
EN 61000-3-2	Harmonic current emissions	Class A	Pass	The power consumption of EUT is less than 75W and no limits apply			
EN 61000-3-3	Voltage fluctuations and flicker	-	Pass	Meets the requirements			

Immunity						
Standard	Test Item	Result	Remark			
EN 61000-4-2	Electrostatic discharges (ESD)	Pass Meets the requirements of Performance Criterion B				
EN 61000-4-3	Continuous radiated disturbances (RS)	Pass	Meets the requirements of Performance Criterion A			
EN 61000-4-4	Electrical fast transients (EFT)	Pass	Meets the requirements of Performance Criterion A			
EN 61000-4-5			Meets the requirements of Performance Criterion A			
EN 61000-4-6	Continuous conducted disturbances (CS)	Pass	Meets the requirements of Performance Criterion A			
EN 61000-4-11	Voltage dips and interruptions	Pass	 Meets the requirements of Voltage Dips: ♦ 0% residual for 0.5 cycle - Performance Criterion A ♦ 0% residual for 1 cycle - Performance Criterion A ♦ 70% residual for 25 cycles - Performance Criterion A Voltage Interruptions: ♦ 0% residual for 250 cycles - Performance Criterion A 			

Note: Test record contained in the referenced test report relate only to the EUT sample and test item.

F

2 Test Configuration of Equipment Under Test

2.1 Test Facility

Conducted disturbance at mains terminals, Conducted disturbance at telecommunication ports, Harmonics, Flicker, ESD, EFT, Surge, CS and DIP Tests

W01: 5F-1, No.188, Baoqiao Rd., Xindian Dist., New Taipei City 23145, Taiwan (R.O.C.)

RS Test


W05: 1F-7, No.188, Baoqiao Rd., Xindian Dist., New Taipei City 23145, Taiwan (R.O.C.)

Radiated emission (9*6*6 Chamber), Conducted disturbance at mains terminals and Conducted disturbance at telecommunication ports Tests

W06: No.67-9, Shimen Rd., Tucheng Dist., New Taipei City 23654, Taiwan (R.O.C.)

ACCREDITATIONS

The laboratories are accredited and approved by the TAF according to ISO/IEC 17025.

C E

2.2 Measurement Uncertainty

The measurement instrumentation uncertainly consideration contained in CISPR 16-4-2.

This uncertainty represents an expanded uncertainty expressed at approximately the 95% confidence level using a coverage factor of k=2.

Please note that the measurement uncertainty are provided for informational purpose only and are not used in determining the Pass/Fail results.

2.2.1 Conducted Emission test

Test Site	Measurement Freq. Range	$\mathrm{dB}\left(U_{\mathrm{cispr}} ight)$	Note
W01	150 kHz ~ 30 MHz	2.43	N/A
W06	150 kHz ~ 30 MHz	2.52	N/A

2.2.2 Conducted emission at telecom port test

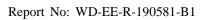
Test Site	Measurement Freq. Range	$\mathrm{dB}\left(U_{\mathrm{cispr}} ight)$	Note
W01	150 kHz ~ 30 MHz	2.45	N/A
W06	150 kHz ~ 30 MHz	2.40	N/A

2.2.3 Radiated Emission test

Test Site	Measurement Freq. Range	Ant	$dB (U_{cispr})$	Note
	30 MHz ~ 200 MHz	V	3.16	N/A
	30 MHz ~ 200 MHz	Н	2.46	N/A
WIOG	200 MHz ~ 1000 MHz	V	4.72	N/A
W06	200 MHz ~ 1000 MHz	Н	3.01	N/A
	1 GHz ~ 6 GHz	V	5.04	N/A
	1 GHz ~ 6 GHz	Н	4.92	N/A

2.2.4 Harmonics Current Measurement

Test Site	Expanded Uncertainty			
W01	Voltage	0.1 %		
	Current	0.15 %		



2.2.5 Voltage Fluctuation and Flicker Measurement

Test Site	Expanded Uncertainty				
W01	P _{st}	8 %			

2.2.6 Immunity Test

Test Site	Item	Expanded Unc	Expanded Uncertainty	
	Electrostatic Discharge	Voltage	1.9%	k=2
	(ESD)	Timing	6.9%	K=2
	Electrical fast transients	Voltage	10.4%	k=2
	(EFT)	Timing	5.1%	K=2
		Voltage	5.6%	
W01	Surges	Current	5.1%	k=2
		Time	4.6%	
	Continuous conducted disturbances (CS)	CDN	1.44dB	150kHz ~ 230MHz,
		EM Clamp	4.09dB	k=2
	Voltage dips and	Voltage	5.2%	k=2
	interruptions	Time	4.7%	K=2
W05	Continuous radiated	80MHz – 1GHz	1.41dB	20MHz 6CHz k-2
W 05	disturbances (RS)	1GHz – 6GHz	1.44dB	80MHz - 6GHz, k=2

3 Generation Information

3.1 Description of EUT

Product	Ultra Short Throw Outdoor Portable LED Projector		
Brand	MosicGO TM		
Model	MGFU		
Applicant	Elite Screens Visual & Sound Co., Ltd.		
Received date	Aug. 29, 2019		
EUT Power Rating	19 Vdc (from adapter)		
Model Differences	erences N/A		
Operating System	N/A		
Data Cable Supplied	N/A		
Accessory Device	Adapter, remote control, HDMI cable and USB Type C cable		
I/O Port	Please refer to the User's Manual		

Note:

1. The EUT uses the follow adapter:

Adapter			
Brand EDAC			
Model EA11013M-1900			
Input Power 100-240Vac, 50-60Hz, 2.0A			
Output Power	19Vdc, 6.31A		
Power line	Input: 1.8m non-shielded cable without core. Output: 1m non-shielded cable with one core.		

2. The EUT's highest operating frequency is more than 108MHz. Therefore the radiated emission is tested up to 6GHz.

F

3.2 Description of Test Modes

For conducted emission, the EUT has been pre-tested under the following test modes, and **test mode 2** was the worst case for final test.

Test Mode	Test Condition		
1	Adapter + Battery, Projector on / HDMI 1 mode, BT ON		
2	Adapter + Battery, Projector on / USB Type C display mode, BT ON		

For radiated emission, the EUT has been pre-tested under the following test modes, and **test mode 2** was the worst case for final test.

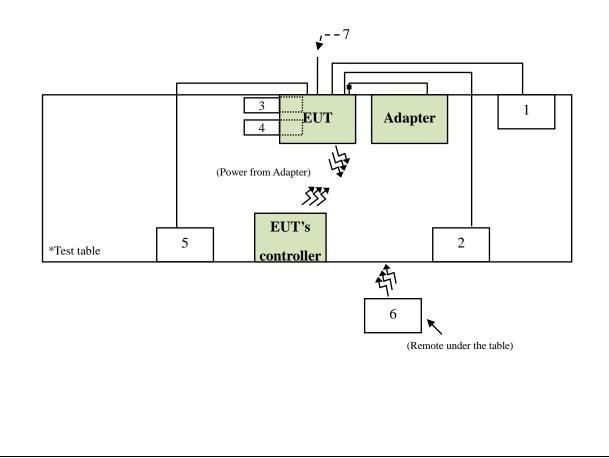
Test Mode	Test Condition		
1	Adapter + Battery, Projector on / HDMI 1 mode, BT ON		
2	Adapter + Battery, Projector on / USB Type C display mode, BT ON		
3	Only Battery, Projector on / HDMI 1 mode, BT ON		

Test results are presented in the report as below.

Test Result	Test Condition				
	Conducted emission test				
-	Adapter + Battery, Projector on / USB Type C display mode, BT ON				
	Radiated emission 30MHz ~ 1GHz test				
-	Adapter + Battery, Projector on / USB Type C display mode, BT ON				
	Radiated emission above 1GHz test				
-	Adapter + Battery, Projector on / USB Type C display mode, BT ON				
Harmonics, Flicker and Immunity test					
-	Adapter + Battery, Projector on / USB Type C display mode, BT ON				

3.3 EUT Operating Condition

- a. Placed the EUT on the test table.
- b. The EUT sent voice signal to earphone.
- c. The ipod nano sent audio signal to EUT via wireless cable.
- d. The NB sent "Color Bar ITU-R.BT471-1" signal to EUT.
- e. The EUT enabled the Bluetooth function.
- f. The EUT connected to termination resistor as a dummy load.


3.4 Description of Support Unit

Item	Equipment	Brand	Model No.	Serial No.	FCC ID	Data Cable	Power Cord	Remark
1	Notebook	DELL	XPS 13	N/A	FCC DoC Approved	1m shielded Type C to C cable	AC: 1m non-shielded cable DC: 1m non-shielded cable with one core	-
2	Earphone & Microphone	E-books	E-EPA057	N/A	N/A	1.4m non-shielded cable	N/A	-
3	Load	N/A	N/A	N/A	N/A	N/A	N/A	Supplied by client
4	Load	N/A	N/A	N/A	N/A	N/A	N/A	Supplied by client
5	Load	N/A	N/A	N/A	N/A	0.8m shielded Type C to A cable	N/A	Supplied by client
6	iPod nano	apple	A1446	N/A	N/A	N/A	N/A	-
7	HDMI cable *2	AVIER	N/A	N/A	N/A	1.5m shielded cable	N/A	-

The EUT has been conducted testing with other necessary accessories or support units.

Note: 1. The core(s) is(are) originally attached to the cable(s).

3.5 Configuration of System Under Test

4 Emission Test

4.1 Conducted Emission Measurement

4.1.1 Limit of Conducted Emission Measurement

Class A equipment:

Requirements for conducted emissions from the AC mains power ports of Class A equipment						
	Me	asurement	Class A limits			
Frequency (MHz)	Coupling device	Detector type/ bandwidth	dB(uV)			
0.15 to 0.5	AMN	Quasi Peak / 9 kHz	79			
0.5 to 30			73			
0.15 to 0.5	AMN		66			
0.5 to 30	AIVIIN	Average / 9 kHz	60			

Class B equipment:

Requirements for conducted emissions from the AC mains power ports of Class B equipment					
	Me	asurement	Class B limits		
Frequency (MHz)	Coupling device	Detector type/ bandwidth	dB(uV)		
0.15 to 0.5		Quasi Peak / 9 kHz	66 to 56*		
0.5 to 5	AMN		56		
5 to 30			60		
0.15 to 0.5		Average / 9 kHz	56 to 46*		
0.5 to 5	AMN		46		
5 to 30			50		

* Decreases with the logarithm of the frequency.

Note: 1. The lower limit shall apply at the transition frequencies.

- 2. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- 3. The test result calculated as following:
- Measurement Value = Reading Level + Correct Factor Correction Factor = Insertion loss of LISN + Cable loss + Transient Limiter (If use) Margin Level = Measurement Value –Limit Value

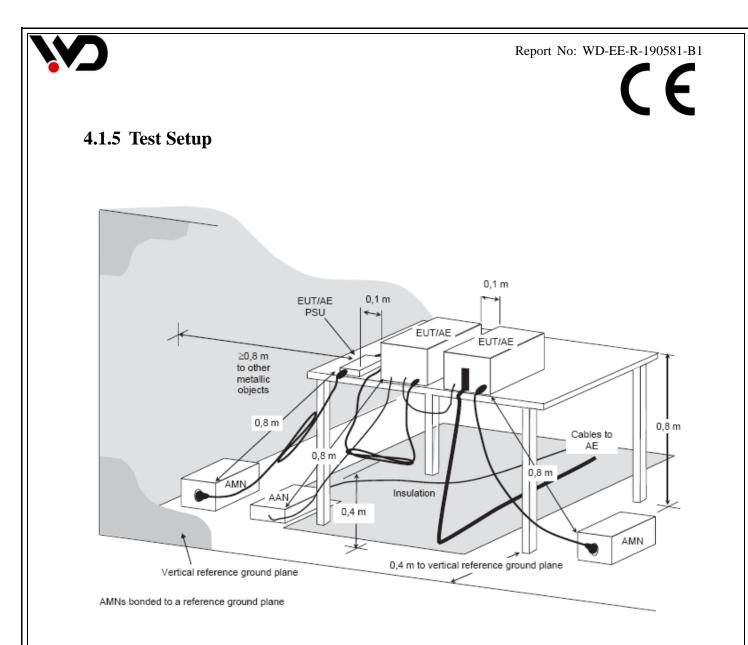
4.1.2 Test Instrument

	Test Site: W01-CE								
Item	Equipment	Manufacturer	Model	Meter No.	Calibration Date				
1	TWO-LINE V-NETWORK	R&S	ENV216	CT-1-025-1	Apr. 29, 2019				
2	Pulse limiter	R&S®	ESH3-Z2	CT-2-015	Apr. 25, 2019				
3	EMI Test Receiver	R&S	ESCI	CT-1-024	Apr. 24, 2019				
4	V-LISN	Schwarzbeck	NSLK8127	CT-1-104-1	Apr. 30, 2019				
5	Test Cable	Marvelous Microwave Inc	200200.400LL. 500A	CT-10-048-1	Apr. 25, 2019				
6	50ohm Termination	N/A	N/A	CT-1-065-1	Apr. 25, 2019				
7	Measurement Software	EZ-EMC	Ver: FA-03A	CT-3-012	No calibration request				

Note: 1. The calibration interval of the above test instruments is 12 months.

	Test Site: W06-CE							
Item	Equipment	Manufacturer	Model	Meter No.	Calibration Date			
1	TWO-LINE V-NETWORK	R&S	ENV216	CT-1-025-2	May 20, 2019			
2	Transient Limiter	Electro Metrics	EM-7600	CT-1-026	May 16, 2019			
3	EMI Test Receiver	R&S	ESR3	CT-1-103	May 16, 2019			
4	V-LISN	Schwarzbeck	NSLK8127RC	CT-1-104-1RC	May 20, 2019			
5	Test Cable	EMCI	EMCCFD300- BM-BM-5000	CT-1-107-2	May 16, 2019			
6	50ohm Termination	HUBER+SUHNE R	N/A	CT-1-109-1	May 13, 2019			
7	Measurement Software	EZ-EMC	Ver: FA-03A	CT-3-012	No calibration request			

Note: 1. The calibration interval of the above test instruments is 12 months.


E

4.1.3 Test Procedure

- a. The EUT was placed 0.8 meter height wooden table from the horizontal ground plane with EUT being connected to power source through a line impedance stabilization network (LISN). The LISN at least be 80 cm from nearest chassis of EUT.
- b. The line impedance stabilization network (LISN) provides 50 ohm/50uH of coupling impedance for the measuring instrument. All other support equipments powered from additional LISN(s).
- c. Interrelating cables that hang closer than 40 cm to the ground plane shall be folded back and forth in the center forming a bundle. All I/O cables were positioned to simulate typical usage.
- d. All I/O cables that are not connected to a peripheral shall be bundle in the center. The end of the cable may be terminated, if required, using the correct terminating impedance. The overall length shall not exceed 1 m.
- e. The EMI test receiver connected to LISN powering the EUT. The actual test configuration, please refer to EUT test photos.
- f. The receiver scanned from 150kHz to 30MHz for emissions in each of test modes. A scan was taken on both power lines, Line and Neutral, recording at least six highest emissions.
- g. The EUT and cable configuration of the above highest emission levels were recorded. The test data of the worst case was recorded.

4.1.4 Deviation from Test Standard

No deviation

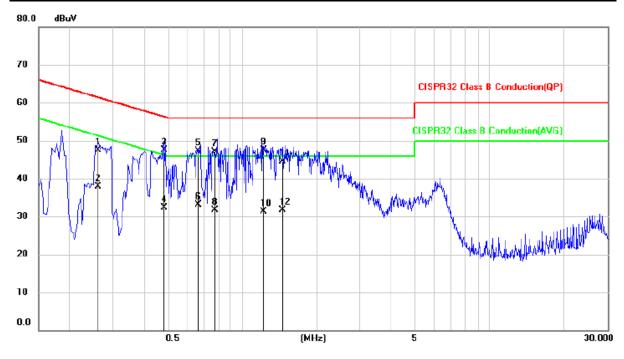
Note: Please refer to 4.1.7 for the actual test configuration.

4.1.6 Test Result

Test Voltage	230Vac, 50Hz	Frequency Range	0.15-30 MHz			
Environmental Conditions	25°C, 56% RH	6dB Bandwidth	9 kHz			
Test Date	2019/09/11	Phase	L			
Tested by	Duncan Cheng	Test Site	W06			
80.0 dBuV	80.0 dBuV					
70						
60			132 Class B Conduction(QP)			
50		CISPR3	2 Class B Conduction(AVG)			
40		WIT What was a way of the				
30	* 1 * * * *		Month and			
20						
0.0						
0.0	0.5 (M	Hz) 5	30.000			

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.1795	41.48	9.81	51.29	64.51	-13.22	QP
2	0.1795	26.52	9.81	36.33	54.51	-18.18	AVG
3	0.2586	38.31	9.81	48.12	61.48	-13.36	QP
4	0.2586	28.60	9.81	38.41	51.48	-13.07	AVG
5	0.4796	38.07	9.81	47.88	56.35	-8.47	QP
6	0.4796	22.44	9.81	32.25	46.35	-14.10	AVG
7	0.7858	37.78	9.83	47.61	56.00	-8.39	QP
8	0.7858	22.05	9.83	31.88	46.00	-14.12	AVG
9	0.9664	37.85	9.84	47.69	56.00	-8.31	QP
10	0.9664	20.88	9.84	30.72	46.00	-15.28	AVG
11	1.2145	37.51	9.85	47.36	56.00	-8.64	QP
12	1.2145	21.13	9.85	30.98	46.00	-15.02	AVG

 Remark:
 1. QP = Quasi Peak, AVG = Average

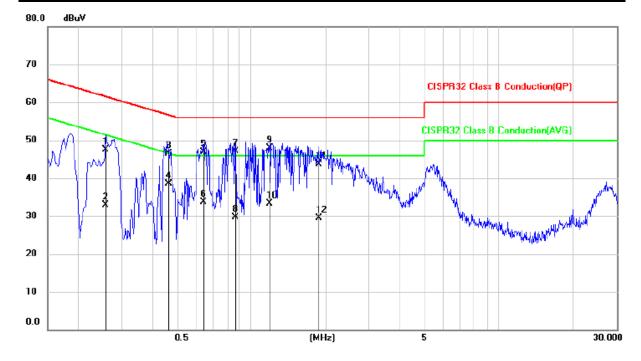

 2. Correction Factor = Insertion loss of LISN + Cable loss + Transient Limiter (If use)

3. Measurement Value = Reading Level + Correct Factor

4. Margin Level = Measurement Value –Limit Value

Test Voltage	230Vac, 50Hz	Frequency Range	0.15-30 MHz
Environmental Conditions	25°C, 56% RH	6dB Bandwidth	9 kHz
Test Date	2019/09/11	Phase	Ν
Tested by	Duncan Cheng	Test Site	W06

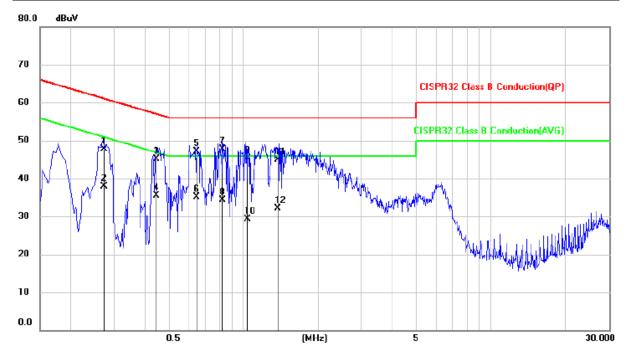
No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.2598	37.71	9.79	47.50	61.44	-13.94	QP
2	0.2598	28.12	9.79	37.91	51.44	-13.53	AVG
3	0.4789	37.72	9.79	47.51	56.36	-8.85	QP
4	0.4789	22.58	9.79	32.37	46.36	-13.99	AVG
5	0.6628	37.42	9.79	47.21	56.00	-8.79	QP
6	0.6628	23.39	9.79	33.18	46.00	-12.82	AVG
7	0.7807	37.36	9.81	47.17	56.00	-8.83	QP
8	0.7807	21.97	9.81	31.78	46.00	-14.22	AVG
9	1.2169	37.69	9.82	47.51	56.00	-8.49	QP
10	1.2169	21.55	9.82	31.37	46.00	-14.63	AVG
11	1.4578	34.62	9.83	44.45	56.00	-11.55	QP
12	1.4578	21.84	9.83	31.67	46.00	-14.33	AVG


Remark: 1. QP = Quasi Peak, AVG = Average

2. Correction Factor = Insertion loss of LISN + Cable loss + Transient Limiter (If use)

3. Measurement Value = Reading Level + Correct Factor 4. Margin Level = Measurement Value –Limit Value

Test Voltage	110Vac, 60Hz	Frequency Range	0.15-30 MHz
Environmental Conditions	25°C, 56% RH	6dB Bandwidth	9 kHz
Test Date	2019/09/11	Phase	L
Tested by	Duncan Cheng	Test Site	W06


No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.2569	37.71	9.81	47.52	61.53	-14.01	QP
2	0.2569	23.15	9.81	32.96	51.53	-18.57	AVG
3	0.4620	36.78	9.81	46.59	56.66	-10.07	QP
4	0.4620	28.70	9.81	38.51	46.66	-8.15	AVG
5	0.6438	37.03	9.82	46.85	56.00	-9.15	QP
6	0.6438	23.92	9.82	33.74	46.00	-12.26	AVG
7	0.8581	37.20	9.84	47.04	56.00	-8.96	QP
8	0.8581	19.84	9.84	29.68	46.00	-16.32	AVG
9	1.1921	37.98	9.85	47.83	56.00	-8.17	QP
10	1.1921	23.52	9.85	33.37	46.00	-12.63	AVG
11	1.8809	33.85	9.89	43.74	56.00	-12.26	QP
12	1.8809	19.65	9.89	29.54	46.00	-16.46	AVG

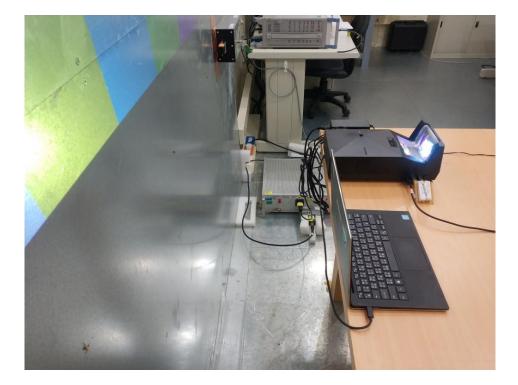
Remark: 1. QP = Quasi Peak, AVG = Average

Quasi real, in S. Frienge C. Correction Factor = Insertion loss of LISN + Cable loss + Transient Limiter (If use)
 Measurement Value = Reading Level + Correct Factor
 Margin Level = Measurement Value –Limit Value

Test Voltage	110Vac, 60Hz	Frequency Range	0.15-30 MHz
Environmental Conditions	25°C, 56% RH	6dB Bandwidth	9 kHz
Test Date	2019/09/11	Phase	Ν
Tested by	Duncan Cheng	Test Site	W06

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB)	Measurement (dBuV)	Limit (dBuV)	Margin (dB)	Detector
1	0.2727	37.87	9.79	47.66	61.04	-13.38	QP
2	0.2727	28.04	9.79	37.83	51.04	-13.21	AVG
3	0.4432	35.29	9.79	45.08	57.00	-11.92	QP
4	0.4432	25.66	9.79	35.45	47.00	-11.55	AVG
5	0.6437	37.35	9.79	47.14	56.00	-8.86	QP
6	0.6437	25.41	9.79	35.20	46.00	-10.80	AVG
7	0.8264	37.85	9.81	47.66	56.00	-8.34	QP
8	0.8264	24.52	9.81	34.33	46.00	-11.67	AVG
9	1.0345	35.46	9.81	45.27	56.00	-10.73	QP
10	1.0345	19.47	9.81	29.28	46.00	-16.72	AVG
11	1.3736	35.13	9.83	44.96	56.00	-11.04	QP
12	1.3736	22.28	9.83	32.11	46.00	-13.89	AVG

Remark: 1. QP = Quasi Peak, AVG = Average 2. Correction Factor = Insertion loss of LISN + Cable loss + Transient Limiter (If use)


3. Measurement Value = Reading Level + Correct Factor 4. Margin Level = Measurement Value –Limit Value

CE

4.1.7 Photographs of Test Configuration

4.2 Conducted Emission at Telecommunication Ports Test

The test is determined no necessary for the EUT do not operate from the telecom lines or contain provisions for operation while connected to the telecom lines.

4.3 Radiated Emission Measurement

4.3.1 Limits of Radiated Emission Measurement

According to EN 55032 table1 - Required highest frequency for radiated measurement:

Highest internal frequency (F _x)	Highest measured frequency
$F_x \le 108 \text{ MHz}$	1 GHz
$108 \text{ MHz} < F_x \leq 500 \text{ MHz}$	2 GHz
$500 \text{ MHz} < F_x \le 1 \text{ GHz}$	5 GHz
$F_x > 1 \text{ GHz}$	$5 \times F_x$ up to a maximum of 6 GHz

Remark:

1. Fx : highest fundamental frequency generated or used within the EUT or highest frequency at which it operates.

2. Where Fx is unknown, the radiated emission measurements shall be performed up to 6 GHz.

Class A equipment:

Requirements for radiated emissions at frequencies up to 1 GHz for Class A equipment				
	Me	asurement	Class A limits dB(uV/m)	
Frequency (MHz)	Distance (m)	Detector type/ bandwidth	OATS/SAC	
30 to 230	10	Quasi Peak / 120 kHz	40	
230 to 1000	10		47	
30 to 230	3		50	
230 to 1000	J		57	

Requirements for radiated emissions at frequencies above 1 GHz for Class A equipment				
Measurement Class A limits dI			Class A limits dB(uV/m)	
Frequency (MHz)	Distance (m)	Detector type/ bandwidth	FSOATS	
1000 to 3000		Average /	56	
3000 to 6000	3	1 MHz	60	
1000 to 3000	5	Peak / 1 MHz	76	
3000 to 6000			80	

Class B equipment:

Requirements for radiated emissions at frequencies up to 1 GHz for Class B equipment								
	Me	asurement	Class B limits dB(uV/m)					
Frequency (MHz)	Distance (m)	Detector type/ bandwidth	OATS/SAC					
30 to 230	10	Quasi Peak /	30					
230 to 1000	10		37					
30 to 230	3	120 kHz	40					
230 to 1000	J		47					

Requirements for radiated emissions at frequencies above 1 GHz for Class B equipment								
	Me	asurement	Class B limits dB(uV/m)					
Frequency (MHz)	Distance (m)	Detector type/ bandwidth	FSOATS					
1000 to 3000		Average /	50					
3000 to 6000	3	1 MHz	54					
1000 to 3000	5	Peak /	70					
3000 to 6000		1 MHz	74					

Note: 1. The lower limit shall apply at the transition frequency.

2. Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average3. The test result calculated as following:

Measurement Value = Reading Level + Correct Factor

Correction Factor = Antenna factor + Cable loss (Antenna to preamplifier) - preamplifier Gain + Cable loss (preamplifier to receiver)

Margin Level = Measurement Value - Limit Value

4.3.2 Test Instrument

		Test S	ite: W06-966		
Item	Equipment	Manufacturer	Model	Meter No.	Calibration Date
1	Horn Antenna	Schwarzbeck	BBHA 9120D	CT-9-031	Oct. 09, 2018
2	Horn Antenna	Schwarzbeck	BBHA 9170	CT-9-032	Oct. 11, 2018
3	Bilog Antenna	Schwarzbeck	VULB 9168	СТ-9-027-2	Oct. 19, 2018
4	EXA Signal Analyzer	Keysight	N9010A	CT-1-093	Apr. 19, 2019
5	EMI Test Receiver	Keysight	N9038A	CT-9-029	Dec. 05, 2018
6	Preamplifier	EMEC	EMC330	CT-9-024	Oct. 16, 2018
7	Preamplifier	EMCI	EMC051845SE	CT-9-012	Oct. 11, 2018
8	Preamplifier	EMCI	EMC184045SE	CT-9-013	Oct. 10, 2018
9	Test Cable	EMEC	EM-CB400	CT-9-001-1	Oct. 18, 2018
10	Test Cable	EMEC	EM-CB400	CT-9-001-2	Oct. 18, 2018
11	Test Cable	EMEC	EM-CB400	CT-9-001-3	Oct. 18, 2018
12	Test Cable	HUBER+SUHN ER	SF102	CT-9-002-1	Oct. 10, 2018
13	Test Cable	EMEC	EMC102-KM-K M-600	CT-9-020	Oct. 10, 2018
14	Test Cable	EMEC	EMC102-KM-K M-3000	CT-9-021-1	Oct. 10, 2018
15	Measurement Software	EZ-EMC	Ver : FA-03A2 RE	CT-3-012	No calibration request

Note: 1. The calibration interval of the above test instruments is 12 months.

4.3.3 Test Procedure

- a. The EUT was placed on the top of a turntable 0.8 meters above the ground at a 3 m 966 chamber or 10 m open area test site. The table was rotated 360 degrees to determine the position of the high radiation emissions.
- b. The height of the test antenna shall vary between 1 m to 4 m. Both vertical and horizontal polarizations of the antenna were set to make the measurement.
- c. The EUT was set up as per the test configuration to simulate typical usage per the user's manual. All I/O cables were positioned to simulate typical usage. The actual test configuration, please refer to EUT test photos.
- d. The initial step in collecting radiated emission data is a Spectrum Mode scanning the measurement frequency range.

Below 1GHz:

Reading in which marked as QP or Peak means measurements by using Spectrum Mode with detector RBW=120kHz.

If the Spectrum Mode measured peak value compliance with and lower than Quasi Peak Limit, the EUT shall be deemed to meet QP Limits.

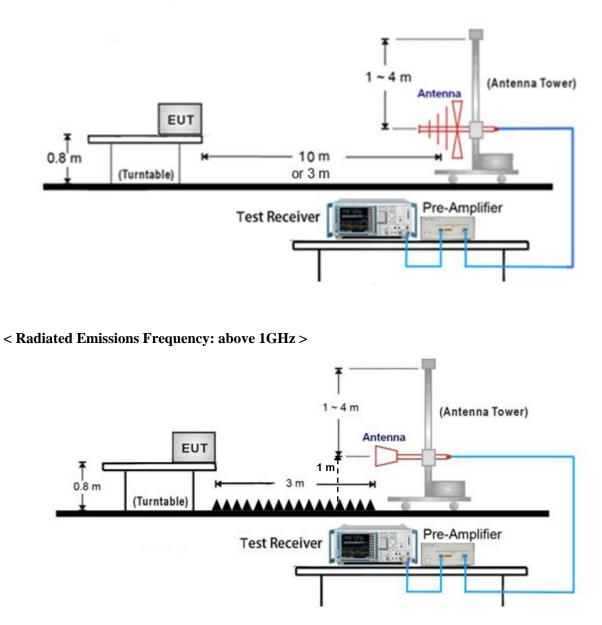
Above 1GHz:

Reading in which marked as Peak & AVG means measurements by using Spectrum Mode with setting in RBW=1MHz.

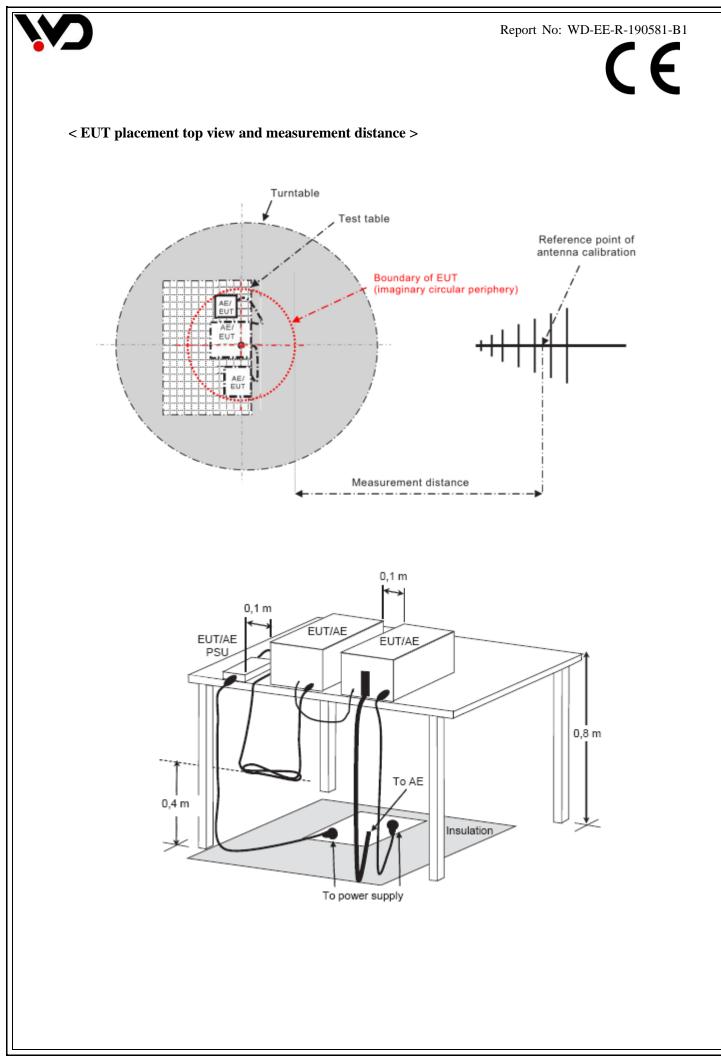
If the Spectrum Mode measured value compliance with the Peak Limits and lower than AVG Limits, the EUT shall be deemed to meet both Peak and AVG Limits.

e. Emission frequency and amplitude were recorded, recording at least six highest emissions. The EUT and cable configuration of the above highest emission levels were recorded. The test data of the worst case was recorded.

4.3.4 Deviation from Test Standard


No deviation

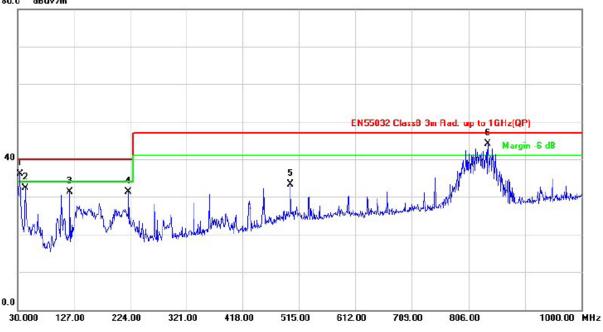
` F


4.3.5 Test Setup

< Radiated Emissions Frequency: 30 MHz to 1000 MHz >

Note:

- (1) Please refer to the 4.3.7 for the actual test configuration.
- (2) The formula of measured value as: Test Result = Reading + Correction Factor
- (3) Detector function in the form: PK = Peak, QP = Quasi Peak, AV = Average
- (4) The test result calculated as following: Measurement Value = Reading Level + Correct Factor
- Correct Factor = Antenna Factor + Cable Loss Amplifier Gain (if use) Margin Level = Measurement Value - Limit Value



4.3.6 Test Result

Test Voltage	230Vac, 50Hz	Frequency Range	30 – 1000 MHz
Environmental Conditions	28°C, 63% RH	6dB Bandwidth	120 kHz
Test Date	2019/09/09	Test Distance	3m
Tested by	Karwin Kao	Polarization	Vertical
Test Site	W06		

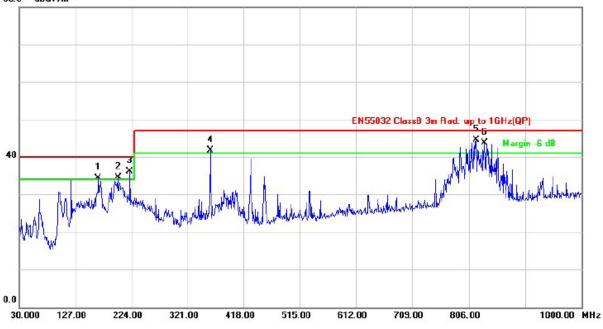
80.0 dBuV/m

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Height (cm)	Table Degree (degree)
1	34.8500	46.53	-10.36	36.17	40.00	-3.83	peak	100	150
2	43.5799	41.71	-9.49	32.22	40.00	-7.78	peak	100	228
3	120.2099	43.61	-12.32	31.29	40.00	-8.71	peak	100	61
4	221.0900	43.72	-12.32	31.40	40.00	-8.60	peak	100	110
5	500.4499	37.65	-4.40	33.25	47.00	-13.75	peak	100	100
6	838.9800	42.58	1.43	44.01	47.00	-2.99	peak	200	251

Remark: 1. QP = Quasi Peak

2. Correction Factor = Antenna factor + Cable loss (Antenna to preamplifier) - preamplifier Gain

+ Cable loss (preamplifier to receiver)


3. Measurement Value = Reading Level + Correct Factor

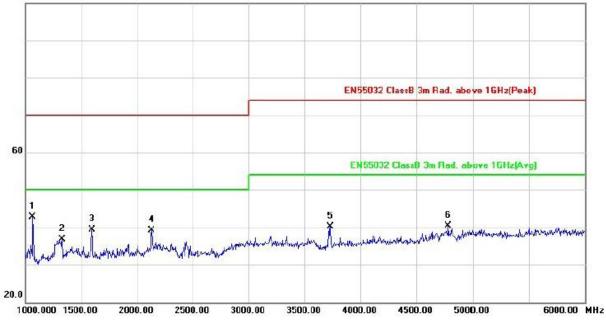
4. Margin Level = Measurement Value - Limit Value

Test Voltage	230Vac, 50Hz	Frequency Range	30 – 1000 MHz
Environmental Conditions	28°C, 63% RH	6dB Bandwidth	120 kHz
Test Date	2019/09/09	Test Distance	3m
Tested by	Karwin Kao	Polarization	Horizontal
Test Site	W06		

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Height (cm)	Table Degree (degree)
1	166.7700	44.21	-9.86	34.35	40.00	-5.65	peak	100	113
2	200.7200	47.00	-12.52	34.48	40.00	-5.52	peak	100	231
3	221.0900	48.46	-12.32	36.14	40.00	-3.86	peak	100	260
4	359.8000	49.29	-7.63	41.66	47.00	-5.34	peak	100	231
5	818.6100	43.39	1.14	44.53	47.00	-2.47	peak	100	132
6	832.1900	42.28	1.35	43.63	47.00	-3.37	peak	100	132

Remark: 1. QP = Quasi Peak

2. Correction Factor = Antenna factor + Cable loss (Antenna to preamplifier) - preamplifier Gain


+ Cable loss (preamplifier to receiver)

3. Measurement Value = Reading Level + Correct Factor 4. Margin Level = Measurement Value - Limit Value

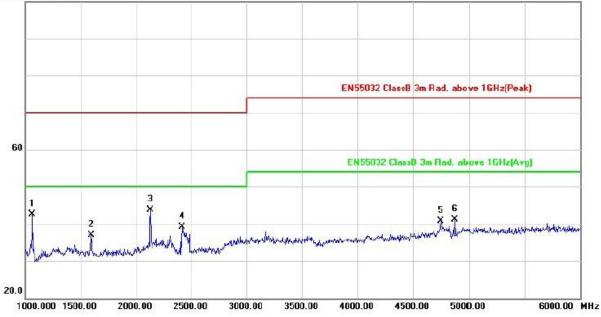
Test Voltage	230Vac, 50Hz	Frequency Range	1 – 6GHz
Environmental Conditions	28°C, 63% RH	6dB Bandwidth	1MHz
Test Date	2019/09/09	Test Distance	3m
Tested by	Karwin Kao	Polarization	Vertical
Test Site	W06		

100.0 dBuV/m

No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Height (cm)	Table Degree (degree)
1	1065.000	64.66	-21.86	42.80	70.00	-27.20	peak	100	360
2	1330.000	55.65	-19.03	36.62	70.00	-33.38	peak	100	53
3	1595.000	58.99	-19.78	39.21	70.00	-30.79	peak	100	220
4	2130.000	55.59	-16.49	39.10	70.00	-30.90	peak	100	328
5	3730.000	53.01	-12.89	40.12	74.00	-33.88	peak	100	92
6	4785.000	50.08	-9.83	40.25	74.00	-33.75	peak	100	230

Remark: 1. peak = Peak, AVG = Average

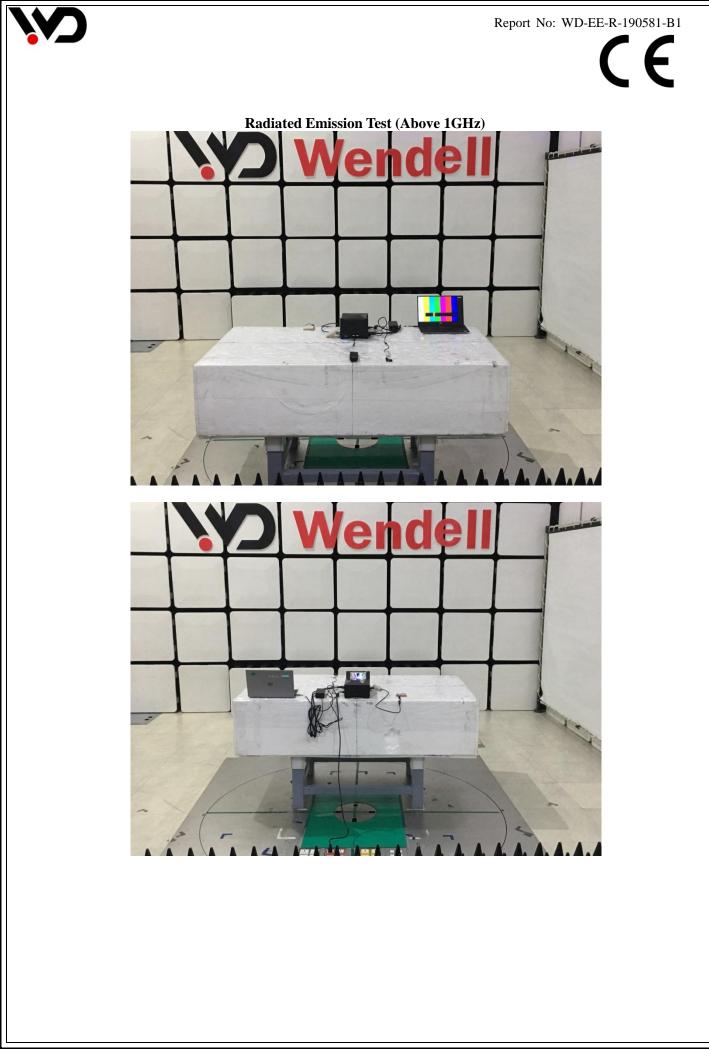
2. Correction Factor = Antenna factor + Cable loss (Antenna to preamplifier) - preamplifier Gain


+ Cable loss (preamplifier to receiver)

- 3. Measurement Value = Reading Level + Correct Factor
- 4. Margin Level = Measurement Value Limit Value

Test Voltage	230Vac, 50Hz	Frequency Range	1 – 6GHz
Environmental Conditions	28°C, 63% RH	6dB Bandwidth	1MHz
Test Date	2019/09/09	Test Distance	3m
Tested by	Karwin Kao	Polarization	Horizontal
Test Site	W06		

100.0 dBuV/m


No.	Frequency (MHz)	Reading Level (dBuV)	Correct Factor (dB/m)	Measurement (dBuV/m)	Limit (dBuV/m)	Margin (dB)	Detector	Antenna Height (cm)	Table Degree (degree)
1	1065.000	64.36	-21.86	42.50	70.00	-27.50	peak	100	219
2	1595.000	56.61	-19.78	36.83	70.00	-33.17	peak	100	160
3	2130.000	60.25	-16.49	43.76	70.00	-26.24	peak	100	297
4	2415.000	55.31	-16.22	39.09	70.00	-30.91	peak	100	229
5	4750.000	50.55	-9.88	40.67	74.00	-33.33	peak	100	307
6	4875.000	51.06	-9.95	41.11	74.00	-32.89	peak	100	317

Remark: 1. peak = Peak, AVG = Average

2. Correction Factor = Antenna factor + Cable loss (Antenna to preamplifier) - preamplifier Gain

- + Cable loss (preamplifier to receiver)
 3. Measurement Value = Reading Level + Correct Factor
 4. Margin Level = Measurement Value Limit Value

4.4 Harmonics Current Measurement

4.4.1 Limits of Harmonics Current Measurement

The limits ensure that harmonic disturbance levels do not exceed the compatibility levels defined in IEC 61000-3-2.

Limits for	Limits for Class A equipment			
Harmonics Order	Max. permissible harmonics current			
n	А			
Ode	d harmonics			
3	2.30			
5	1.14			
7	0.77			
9	0.40			
11	0.33			
13	0.21			
15<=n<=39	0.15x15/n			
Eve	n harmonics			
2	1.08			
4	0.43			
6	0.30			
8<=n<=40	0.23x8/n			

	Limits for Class D equipment					
Harmonics	Max. permissible	Max. permissible				
Order	harmonics current per watt	harmonics current				
n	mA/W	А				
Odd Harmonics only						
3	3.4	2.30				
5	1.9	1.14				
7	1.0	0.77				
9	0.5	0.40				
11	0.35	0.33				
13	0.30	0.21				
15<=n<=39	3.85/n	0.15x15/n				

- **Note:** 1. Class A and Class D are classified according to item section 5 of EN 61000-3-2.
 - 2. According to section 7 of EN 61000-3-2, the above limits for all equipment except for lighting equipment having an active input power > 75 W and no limits apply for equipment with an active input power up to and including 75 W.

4.4.2 Test Instrument

Item	Equipment	Manufacturer	Model	Meter No.	Calibration Date
1	Harmonics & Flicker Analyser	EMC PARTNER	HAR-1000-1P	CT-1-090(1)	Aug. 30, 2019
2	Power Source	EMC PARTNER	PS3-1	CT-1-090a1	Aug. 30, 2019

Note: 1. The calibration interval of the above test instruments is 12 months.

Report No: WD-EE-R-190581-B1

F

4.4.3 Test Procedure

The EUT was placed on the top of a wooden table 0.8 meter above the ground and operated to produce the maximum harmonic under normal operating conditions for each successive harmonic component in turn.

The classification of EUT is according to section 5 of EN 61000-3-2.

The EUT classified as follows:

Class A:

- Balanced three-phase equipment;
- Household appliances excluding equipment identified as Class D;
- Tools excluding portable tools;
- Dimmers for incandescent lamps;
- Audio equipment.

Equipment not specified in one of the three other classes should be considered as Class A equipment.

Note 1: Equipment that can be shown to have a significant effect on the supply system may be reclassified in a future edition of the standard. Factors to be taken into account include:

- Number in use;
- Duration of use;
- Simultaneity of use;
- Power consumption;
- Harmonic spectrum, including phase.

Class B:

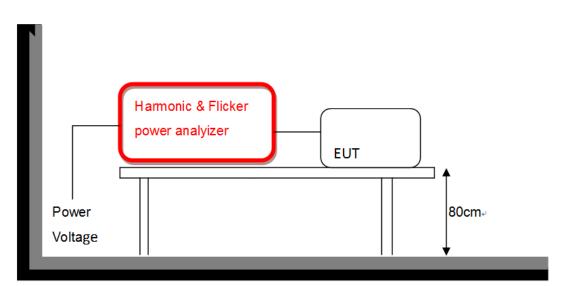
- Portable tools;
- Arc welding equipment, which is not professional equipment.

Class C:

- Lighting equipment;

Class D:

Equipment having a specified power according to 6.2.2 less than or equal to 600W, of the following types:


- Personal computers and personal computer monitors;
- Television receivers.

4.4.4 Deviation from Test Standard

No deviation

4.4.5 Test Setup

4.4.6 Test Result

	Supply Voltage / Ampere		229.5 Vrm 0.489 Arm			Tes	t Date		20	19/09/05			
								ver					
	Tes	t Duration	n	5 min	5 min			Consumption		106.0W			
	Pow	ver Frequ	ency	49.922Hz	49.922Hz			Power Factor 0.9		0.9	0.944		
		vironment nditions	al	23°C, 52%	RH		Tes	ted by		Gı	ıanwei Lia	io	
L													
Ord	der	Freq. [Hz]	Irms [A]	Irms% [%]	Irms%L [%]		ax A]	Imax% [A]	Imax% [A]	L	Limit [A]	Status	Vrms [V]
													<u> </u>
1		50	0.4659	95.235	-	0.4		95.259	-		-	229.52	0.00
2		100	0.0051	1.0479	0.4747	0.0		1.0479	0.474		1.0800	0.1227	0.00
3		150	0.1479	30.240	6.4326	0.1		30.240	4.0400		2.3000	0.0245	0.00
4		200	0.0009	0.1747	0.1987	0.0		0.1747	0.198		0.4300	0.0000	0.00
5		250	0.0143	2.9192	1.2528	0.0		2.9441	1.263		1.1400	0.0000	0.00
		300	0.0012	0.2495	0.4069	0.0		0.2495	0.4068		0.3000	0.0000	0.00
8		350	0.0115	2.3453 0.0749	1.4902			2.3453	1.4902		0.7700	0.0000	0.00
c		400 450	0.0004	3.0938	0.1592 3.7842	0.0		0.0998 3.0938	0.2123		0.2300	0.0000 0.0000	0.00
1		500	0.0002	0.0499	0.1327	0.0		0.0749	0.199		0.4000	0.0000	0.00
1		550	0.0002	0.6487	0.9618	0.0		0.6487	0.9619		0.1340	0.0000	0.00
1		600	0.0032	0.0487	0.1592	0.0		0.0749	0.2389		0.1533	0.0000	0.00
1		650	0.0032	0.6487	1.5113	0.0		0.6737	1.5698		0.1333	0.0000	0.00
14		700	0.0002	0.0407	0.1858	0.0		0.0737	0.2780		0.1314	0.0000	0.00
1		750	0.0042	0.8483	2.7669	0.0		0.8483	2.766		0.1514	0.0000	0.00
1		800	0.0004	0.0749	0.3184	0.0		0.0998	0.4240		0.1150	0.0000	0.00
1		850	0.0042	0.8483	3.1359	0.0		0.8483	3.136		0.1324	0.0000	0.00
1		900	0.0002	0.0499	0.2388	0.0		0.0499	0.238		0.1022	0.0000	0.00
1		950	0.0060	1.2226	5.0510	0.0		1.2226	5.051		0.1184	0.0000	0.00
2		1000	0.0006	0.1248	0.6634	0.0		0.1248	0.663		0.0920	0.0000	0.00
2		1050	0.0037	0.7485	3.4180	0.0		0.7735	3.5308		0.1071	0.0000	0.00
2	2	1100	0.0010	0.1996	1.1676	0.0	010	0.1996	1.1679)	0.0836	0.0000	0.00
2	3	1150	0.0076	1.5469	7.7365	0.0	076	1.5469	7.7403	3	0.0978	0.0000	0.00
24		1200	0.0005	0.0998	0.6369	0.0		0.0998	0.6369		0.0767	0.0000	0.00
2		1250	0.0049	0.9980	5.4253	0.0		1.0230	5.563		0.0900	0.0000	0.00
2		1300	0.0009	0.1747	1.2074	0.0		0.1996	1.3793		0.0708	0.0000	0.00
2		1350	0.0027	0.5489	3.2227	0.0		0.5739	3.3675		0.0833	0.0000	0.00
2		1400	0.0011	0.2246	1.6718	0.0		0.2246	1.6729		0.0657	0.0000	0.00
2		1450	0.0050	1.0230	6.4507	0.0		1.0479	6.6038		0.0776	0.0000	0.00
3		1500	0.0005	0.0998	0.7961	0.0		0.0998	0.7968		0.0613	0.0000	0.00
3		1550	0.0059	1.1976	8.0729	0.0		1.1976	8.0672		0.0726	0.0000	0.00
3		1600	0.0007	0.1497	1.2738	0.0		0.1497	1.273		0.0575	0.0000	0.00
3		1650	0.0013	0.2745	1.9694	0.0		0.2745	1.9678		0.0682	0.0000	0.00
3		1700 1750	0.0007	0.1497 0.2994	1.3534 2.2786	0.0		0.1747 0.2994	1.580		0.0541	0.0000 0.0000	0.00
3		1/50	0.0015	0.2994	0.4777	0.0		0.2994	0.4773		0.0643	0.0000	0.00
3		1800	0.0002	0.6487	5.2192	0.0		0.6737	5.421		0.0511	0.0000	0.00
3		1900	0.0032	0.0487	0.5042	0.0		0.0499	0.5038		0.0008	0.0000	0.00
3		1900	0.0002	0.2495	2.1159	0.0		0.2745	2.3250		0.0484	0.0000	0.00
4		2000	0.0012	0.0499	0.5307	0.0		0.0749	0.7958		0.0377	0.0000	0.00
4	v	2000	0.0002	0.0477	0.5507	0.0	-00 4	0.0747	0.1930	ر	0.0400	0.0000	0.00

Note:

1. Limits are not specified for equipment with a rated power of 75W or less (other than lighting equipment).

2. According to EN 61000-3-2 the manufacturer shall specify the power of the apparatus. This value shall be used for establishing limits. The specified power shall be within +/-10% of the measured power.

F

4.5 Voltage Fluctuation and Flicker Measurement

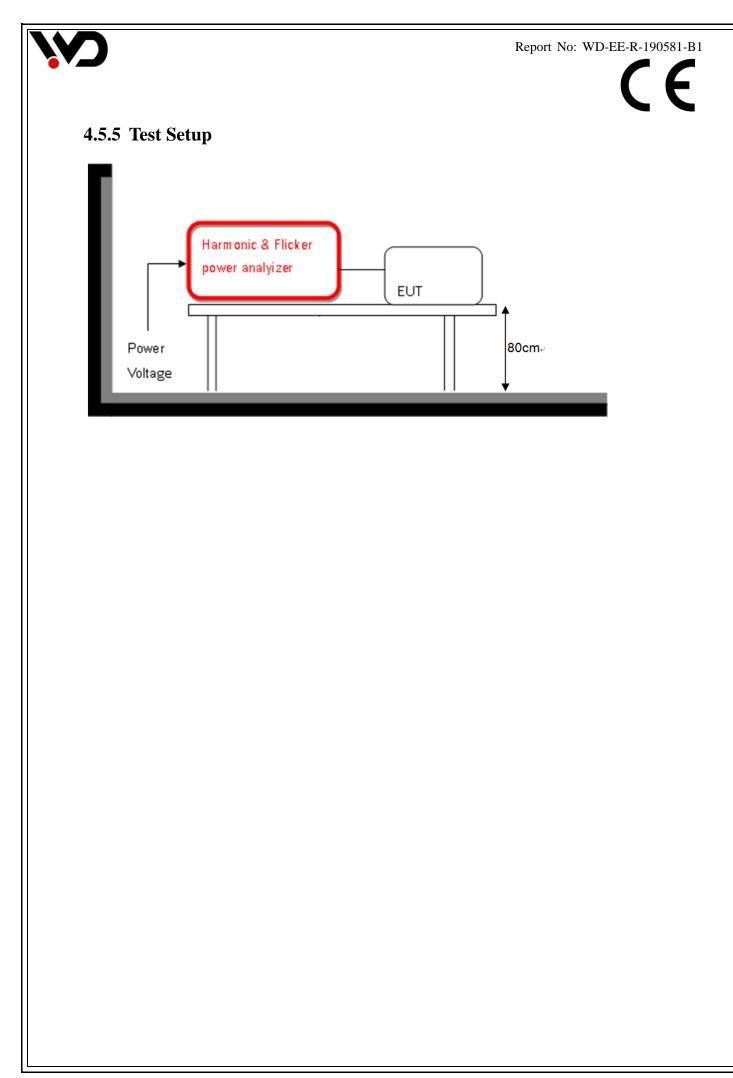
4.5.1 Limit for Voltage Function and Flicker Measurement

Tests Item	Limits IEC/EN 61000-3-3	Remark
P st	1.0, Tp= 10 min.	Pst means short-term flicker
P lt	0.65, Tp=2 hr.	Plt means long-term flicker
Dc(%)	3.3%	dc means relative steady-state voltage change
Dmax(%)	4%	dmax means maximum relative voltage change.
Td (t)	3.3% / 500 ms	Tdt means maximum time that dt exceeds 3 %.

4.5.2 Test Instrument

Item	Equipment	Manufacturer	Model	Meter No.	Calibration Date
1	Harmonics & Flicker Analyser	EMC PARTNER	HAR-1000-1P	CT-1-090(1)	Aug. 30, 2019
2	Power Source	EMC PARTNER	PS3-1	CT-1-090a1	Aug. 30, 2019

Note: 1. The calibration interval of the above test instruments is 12 months.


4.5.3 Test Procedure

The EUT was placed on the top of a wooden table 0.8 meter above the ground and operated to produce the most unfavorable sequence of voltage changes under normal operating condition.

During the flick measurement, the measure time shall include that part of whole operation cycle in which the EUT produce the most unfavorable sequence of voltage changes. The observation period for short-term flicker indicator is 10 min and the observation period for long-term flicker indicator is 2 hours.

4.5.4 Deviation from Test Standard

No deviation

4.5.6 Test Result

Supply Voltage / Ampere	229.3 Vrms / 0.489 Arms	Test Date	2019/09/05
Observation (Tp)	30 min	Environmental Conditions	23°C, 52% RH
Power Frequency	49.922Hz	Tested by	Guanwei Liao

Test Parameter	Measurement Value	Test Limit	Remarks
P _{st}	0.07	1.00	Pass
P _{lt}	007	0.65	Pass
T _{dt} (ms)	0.00	500	Pass
d _{max} (%)	0.00	4%	Pass
dc (%)	0.00	3.3%	Pass

Note: 1.

2. 3.

 P_{st} means short-term flicker indicator. P_{lt} means long-term flicker indicator. T_{dt} means maximum time that dt exceeds 3.3 %.

 $4. \quad d_{max} \ means \ maximum \ relative \ voltage \ change.$

5. dc means relative steady-state voltage change.

5 Immunity Test

5.1 Standard Description

Product standard		EN 301489-1 & EN 301489-17
	EN 61000-4-2 (ESD)	±8kV Air discharge ±4kV Contact discharge, Performance Criterion B
	EN 61000-4-3 (RS)	80 M~ 6000 MHz, 3V/m(rms) , 80% AM (1kHz), Performance Criterion A
	EN 61000-4-4 (EFT)	AC Power Port: ±1kV DC Power Port: ±0.5Kv Signal Ports and Wired Network Ports (cable length > 3m): 0.5kV Performance Criterion B
Basic Standard and Performance Criterion required	EN 61000-4-5 (Surge)	AC power line: line to line $\pm 1 \text{ kV}$, line to ground $\pm 2 \text{ kV}$, Performance Criteria B Outdoor signal line: Symmetrically: line to ground $\pm 1 \text{ kV}$, Non-symmetrically: line to line $\pm 0.5 \text{ kV}$, line to ground $\pm 1 \text{ kV}$, Indoor signal line (cable length > 30m): Symmetrically: line to ground $\pm 0.5 \text{ kV}$, Non-symmetrically: line to ground $\pm 0.5 \text{ kV}$, Performance Criteria B
	EN 61000-4-6 (CS)	Signal and Telecommunication Ports(cable length > 3m), AC Power Port; DC Power Port: 0.15 ~ 80 MHz, 3Vrms, 80% AM, 1kHz, Performance Criterion A
	EN 61000-4-11 (Dips)	 Voltage Dips: 0% residual for 0,5 cycle, Required Performance Criterion B 0% residual for 1 cycle, Required Performance Criterion B 70% residual for 25 cycles, Required Performance Criterion B Voltage Interruptions: 0% residual for 250 cycles, Required Performance Criterion C

5.2 Performance Criteria

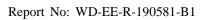
According to Clause 6 of EN 301489-1 standard, the required performance criteria as following:

Criteria CT/CR	During and after the test, the equipment shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer when the equipment is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance. During the test the EUT shall not unintentionally transmit or change its actual operating state and stored data. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and what the user may reasonably expect from the equipment if used as intended.
Criteria TT/TR	 For surges applied to symmetrically operated wired network ports intended to be connected directly to outdoor lines the following criteria applies: 1. For products with only one symmetrical port intended for connection to outdoor lines, loss of function is allowed, provided the function is self-recoverable, or can be restored by the operation of the controls by the user in accordance with the manufacturer's instructions. A SW reboot is not allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost. 2. For products with more than one symmetrical port intended for connection to outdoor lines, loss of function on the port under test is allowed, provided the function is self-recoverable. A SW reboot is not allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost. 2. For products with more than one symmetrical port intended for connection to outdoor lines, loss of function on the port under test is allowed, provided the function is self-recoverable. A SW reboot is not allowed. Information stored in non-volatile memory, or protected by a battery backup, shall not be lost. For all other ports the following applies: 1. After the test, the equipment shall continue to operate as intended. No degradation of performance or loss of function is allowed below a permissible performance level specified by the manufacturer, when the equipment is used as intended. In some cases this permissible performance level may be replaced by a permissible loss of performance. 2. During the EMC exposure to an electromagnetic phenomenon, a degradation of performance is, however, allowed. No change of the actual mode of operation (e.g. unintended transmission) or stored data is allowed. 3. If the minimum performance level or the permissible performance loss is not specified by the manufacturer, then either of these may be deduced from the product description and documentation and wh

According to Clause 6 of EN 301489-17 standard, the required performance criteria as following:

Criteria CT	The performance criteria A shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an ACKnowledgement (ACK) or Not ACKnowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.
Criteria CR	The performance criteria A shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.
Criteria TT	The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5000 ms duration, for which performance criteria C shall apply. Tests shall be repeated with the EUT in standby mode (if applicable) to ensure that unintentional transmission does not occur. In systems using acknowledgement signals, it is recognized that an acknowledgement (ACK) or not-acknowledgement (NACK) transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.
Criteria TR	The performance criteria B shall apply, except for voltage dips of 100 ms and voltage interruptions of 5000 ms duration for which performance criteria C shall apply. Where the EUT is a transceiver, under no circumstances, shall the transmitter operate unintentionally during the test. In systems using acknowledgement signals, it is recognized that an ACK or NACK transmission may occur, and steps should be taken to ensure that any transmission resulting from the application of the test is correctly interpreted.

Report No: WD-EE-R-190581-B1



Criteria	During test	After test
А	Shall operate as intended. ^{NOTE 1} Shall be no loss of function. Shall be no unintentional transmissions.	Shall operate as intended. Shall be no degradation of performance. ^{NOTE3} Shall be no loss of function. Shall be no loss of stored data or user programmable functions.
В	May show loss of function. May show degradation of performance. ^{NOTE2} Shall be no unintentional transmissions.	 Functions shall be self-recoverable. Shall operate as intended after recovering. Shall be no degradation of performance.^{NOTE3} Shall be no loss of stored data or user programmable functions.
С	May be loss of function.	Functions shall be recoverable by the operator. Shall operate as intended after recovering. Shall be no degradation of performance . ^{NOTE3}

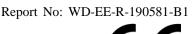
NOTE 1: Operate as intended during the test allows a level of degradation not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 2: Degradation of performance during the test is understood as a degradation to a level not below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

NOTE 3: No degradation of performance after the test is understood as no degradation below a minimum performance level specified by the manufacturer for the use of the apparatus as intended. In some cases the specified minimum performance level may be replaced by a permissible degradation of performance. After the test no change of actual operating data or user retrievable data is allowed. If the minimum performance level or the permissible performance degradation is not specified by the manufacturer then either of these may be derived from the product description and documentation (including leaflets and advertising) and what the user may reasonably expect from the apparatus if used as intended.

5.3 Electrostatic Discharge (ESD)

5.3.1 Test Specification


Standard	EN 61000-4-2
Discharge Impedance	330 ohm / 150 pF
Dischange Veltage	Air Discharge: ±2, ±4, ±8 kV
Discharge Voltage	Contact Discharge: ±4 kV
Number of Discharge	Air: Minimum 10 times at each point.
Number of Discharge	Contact: Minimum 10 times at each point.
Discharge Mode	Single Discharge
Discharge Period	1 second minimum

5.3.2 Test Instrument

Item	Equipment	Manufacturer	Model	Meter No.	Calibration Date
1	ESD Simulator/ Discharge Gun	NoiseKen	ESS-B3011	CT-1-089	Aug. 19, 2019
2	Digital Thermo-Hygro Meter	N/A	HTC-8	CT-2-047	Apr. 23, 2019
3	Atmosphere pressure meter	Mingle	BKT381	CT-2-091	Jul. 25, 2019

Note: 1. The calibration interval of the test instruments is 12 months.

2. The calibration interval of thermo hygrometer/ Atmosphere pressure meter is 24 months.

5.3.3 Test Procedure

The test generator necessary to perform direct and indirect application of discharge to the EUT in following methods:

a. Contact discharges to the conductive surface and coupling planes:

The EUT shall be exposed to at least 20 discharges, 10 each at positive and negative polarity, at a minimum of four test points. One of the test points shall be subjected to at least 10 indirect discharges to the center of the front edge of the horizontal coupling plane (HCP). The remaining three test points shall be each receives at least 10 direct contact discharges. If no direct contact test points are available, shall be at least 20 indirect discharges applied in the indirect mode. Test shall be performed at a maximum repetition rate of one discharge per second.

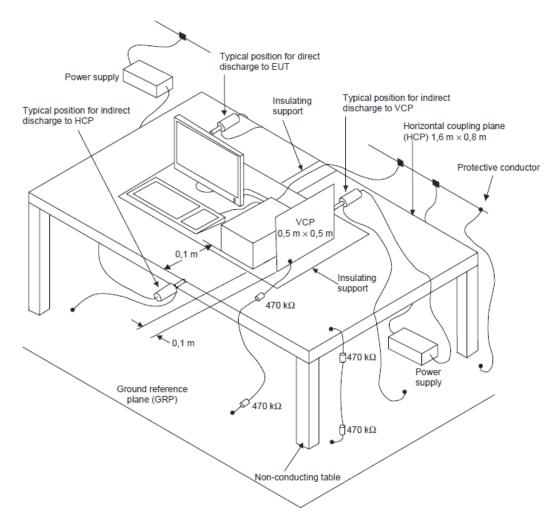
Vertical Coupling Plane (VCP):

The coupling plane, of dimensions $0.5 \text{ m} \times 0.5 \text{ m}$, is placed parallel to, and positioned at a distance 0.1 m from, the EUT, with the discharge electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.

Horizontal Coupling Plane (HCP):

The coupling plane, of dimensions $1.6 \text{ m} \times 0.8 \text{ m}$, is placed under the EUT. The generator shall be positioned vertically a distance of 0.1 m from the EUT, with the discharge electrode touching the coupling plane. The four faces of the EUT will be performed with electrostatic discharge.

b. Air discharge at apertures and slots and insulating surface:


On those parts of the EUT where it is not possible to perform contact discharge testing, the equipment should be investigated to identify user accessible points where breakdown may occur. Such points are tested using the air discharge method. This investigation should be restricted to those area normally handled by the user. A minimum 10 single air discharges shall be applied to the selected test point for each such area.

5.3.4 Deviation from Test Standard

No deviation

5.3.5 Test Setup

5.3.6 Test Result

Test Voltage	230Vac, 50Hz	Test Date	2019/09/24
Environmental Conditions	25°C, 51% RH	Pressure	1010 mbar
Tested by	Evan Cheng		

Test Results of Direct Application

Air Discharge					
Test Point]	Discharge Level (kV)	Result	
lest romt	± 2	±4 ±8		Kesuit	
Front	А	А	А	А	
Back	А	А	А	А	
Left	А	B(#1)	B(#1)	В	
Right	А	B (#1)	B(#1)	В	
Тор	А	А	А	А	
Bottom	А	А	А	А	
Other	А	А	А	А	

* Test location(s) in which discharge to be applied illustrated by photos shown in next page(s).

Contact Discharge			
Terret De trad	Discharge Level (kV)	Result	
Test Point	±4	Kesuit	
Front	N/A	N/A	
Back	N/A	N/A	
Left	N/A	N/A	
Right	N/A	N/A	
Тор	B(#1)	В	
Bottom	B(#1)	В	
Other	N/A	N/A	

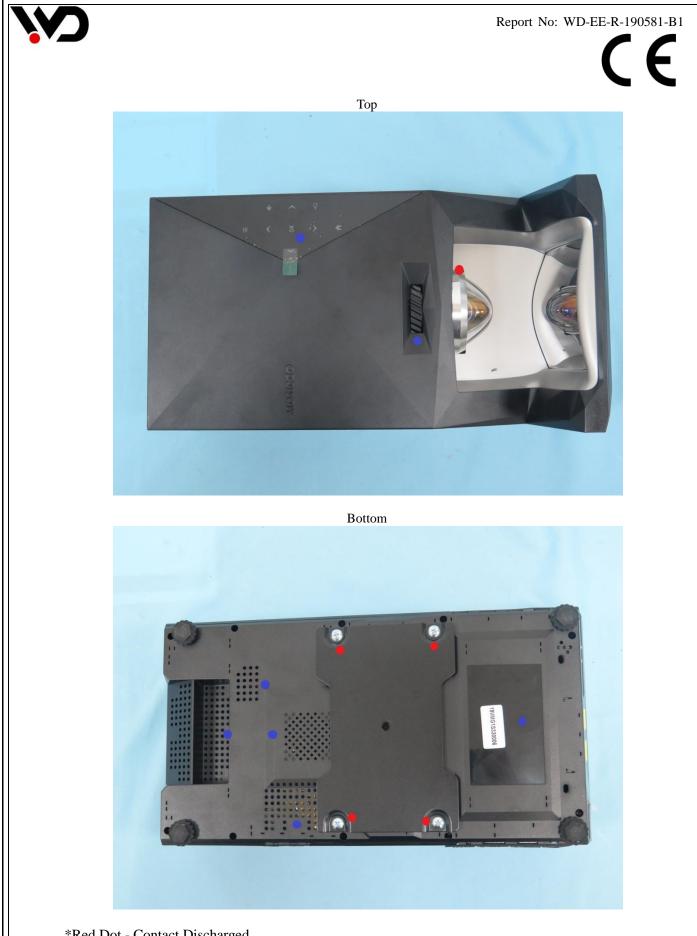
* Test location(s) in which discharge to be applied illustrated by photos shown in next page(s).

Test Results of Indirect Application

HCP Discharge			
Test Point	Discharge Level (kV)	Descrift	
Test Point	±4	Result	
Front	А	А	
Back	А	А	
Left	А	А	
Right	А	А	

VCP Discharge			
Test Point	Discharge Level (kV)	Result	
lest romt	±4	Kesun	
Front	А	А	
Back	А	А	
Left	А	А	
Right	А	А	

Note:


N/A: Not applicable

Criteria A: The EUT function was correct during the test.

Criteria B: (#1) The EUT was interrupted during test. It could become normal after test stop.

*Red Dot - Contact Discharged Blue Dot - Air Discharged

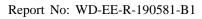
*Red Dot - Contact Discharged Blue Dot - Air Discharged

Report No: WD-EE-R-190581-B1

CE

5.3.7 Photographs of Test Configuration

5.4 Radiated, Radio-frequency, Electromagnetic Field Immunity Test (RS)


5.4.1 Test Specification

Standard	EN 61000-4-3
Frequency Range	80 MHz - 6000 MHz
Field Strength	3 V/m
Modulation	80%, AM Modulation, 1 kHz Sine Wave
Frequency Step 1%	
Polarity of Antenna	Horizontal and Vertical
Test Distance	3 m
Antenna Height	1.5 m
Dwell Time	3.0 seconds

5.4.2 Test Instrument

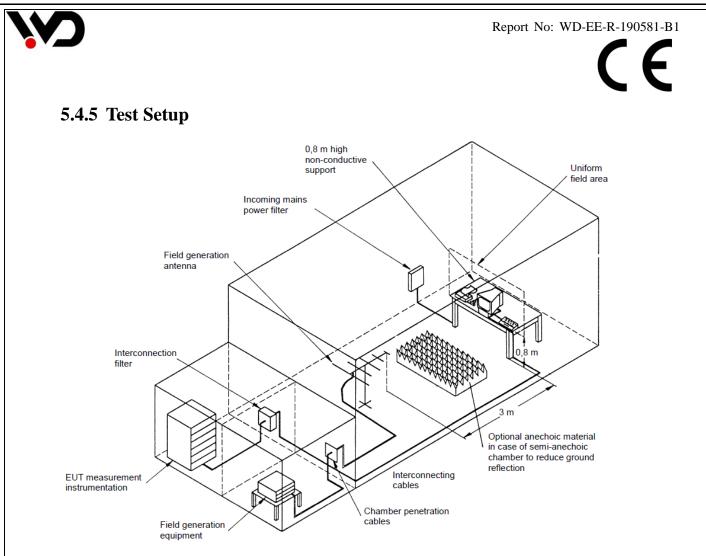
Item	Equipment	Manufacturer	Model	Meter No.	Calibration Date
1	RadiCentre ® Modular EMC Test Systems	DARE	CTR1004B	CT-1-080	No calibration request
2	RF Signal Generator	DARE	RGN6000B	CT-1-080	Aug. 01, 2019
3	LINEAR POWER RF AMPLIFIER	OPHIR	5225	CT-1-082	No calibration request
4	LINEAR POWER RF AMPLIFIER	OPHIR	5193	CT-1-083	No calibration request
5	LINEAR POWER RF AMPLIFIER	OPHIR	5022A	CT-1-084	No calibration request
6	Periodic Test-Antenna	Schwarzbeck Mess - Elektronik	STLP 9128 E	CT-1-085	No calibration request
7	Stacked Microwave LogPer. Antenna	Schwarzbeck Mess - Elektronik	STLP 9149	CT-1-086	No calibration request
8	Electric Field Probe	FRANKONIA	EFS-10	CT-1-060a1	Aug. 01, 2019
9	Measurement Software	EMC-RS	Ver: 2.02	N/A	No calibration request

Note: 1. The calibration interval of the above test instruments is 12 months.

5.4.3 Test Procedure

The test procedure was in accordance with IEC 61000-4-3.

The EUT and load, which are placed on a table that is 0.8 meter above ground, are placed with one coincident with the calibration plane such that the distance from antenna to the EUT was 3 meters.


Both horizontal and vertical polarization of the antenna and four sides of the EUT are set on measurement.

In order to judge the EUT performance, a CCD camera is used to monitor EUT screen. All the scanning conditions are as follows:

	Condition of Test	Remarks	
1	Field Strength	3V/m	
2	Radiated Signal	AM 80% Modulated with 1kHz	
3	Scanning Frequency	80M- 6000MHz	
4	Dwell Time	3.0 Seconds	
5	Frequency Step Size Δf	1%	

5.4.4 Deviation from Test Standard

No deviation

NOTE:

TABLETOP EQUIPMENT

The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive table 0.8 meters in height.

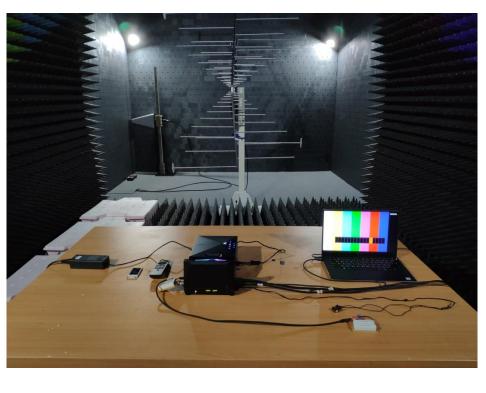
FLOOR STANDING EQUIPMENT

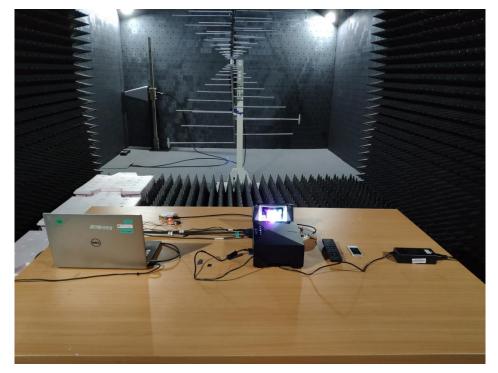
The EUT installed in a representative system as described in section 7 of IEC 61000-4-3 was placed on a non-conductive wood support 0.1 meters in height.

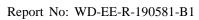
5.4.6 Test Result

Test Voltage	230Vac, 50Hz	Environmental Conditions	24°C, 51% RH
Tested by	Evan Cheng	Test Date	2019/10/01

Frequency Range (MHz)	Azimuth	Polarity	Field Strength (V/m)	Modulation	Result
80-6000	0	H/V	3	80% AM (1kHz)	А
80-6000	90	H/V	3	80% AM (1kHz)	А
80-6000	180	H/V	3	80% AM (1kHz)	А
80-6000	270	H/V	3	80% AM (1kHz)	А


Note:


Criteria A: The EUT function was correct during the test.



5.4.7 Photographs of Test Configuration

5.5 Electrical Fast Transient /Burst Immunity Test (EFT)

5.5.1 Test Specification

Standard	EN 61000-4-4
Test Voltage	AC supply lines: ±1 kV DC Power Port: ±0.5 kV Signal ports and telecommunication ports: ±0.5kV
Polarity	Positive & Negative
Impulse Frequency	xDSL telecommunication port: 100 kHz other: 5kHz
Impulse Wave	5/50 ns
Burst Duration	xDSL port: 0.75 ms other port: 15 ms
Burst Period	300 ms
Test Duration	Not less than 1 min.

5.5.2 Test Instrument

Item	Equipment	Manufacturer	Model	Meter No.	Calibration Date
1	EMS Generator	Thermo	EMC Pro	CT-1-030	Apr. 28, 2019
2	Clamp	KeyTek	CCL	CT-1-032	Apr. 28, 2019
3	Measurement Software	CEWare32	Ver: 4.1	N/A	No calibration request

Note: 1. The calibration interval of the above test instruments is 12 months.

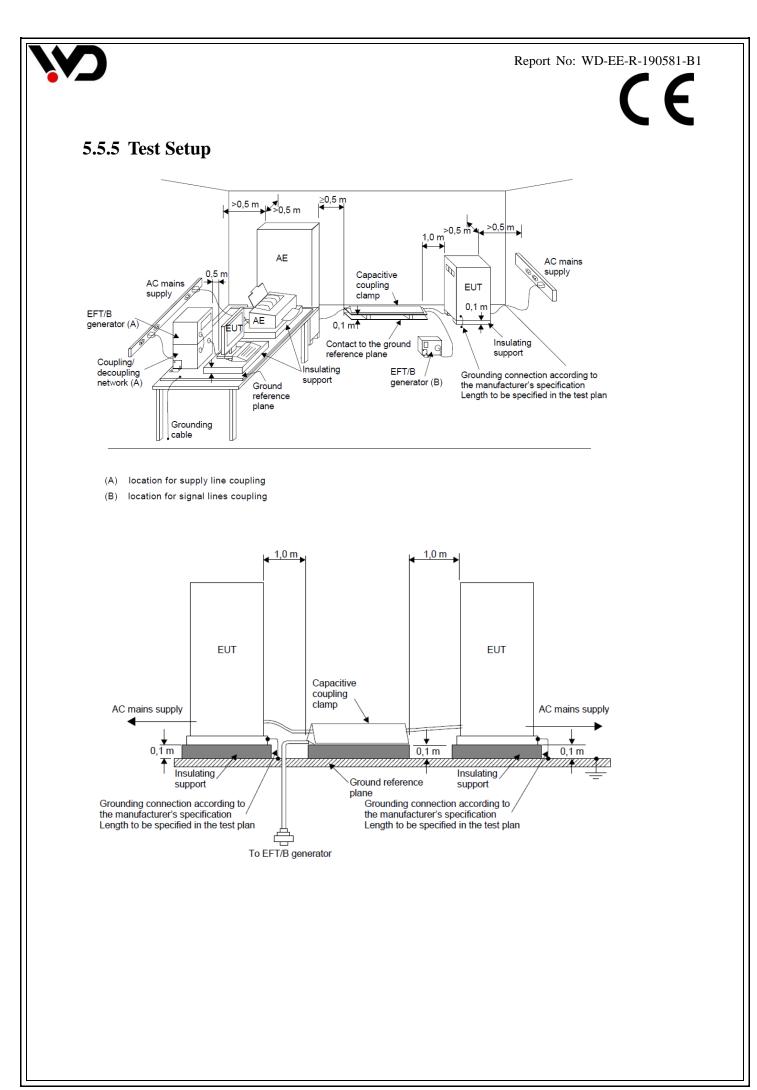
[F

5.5.3 Test Procedure

The EUT is placed on a table that is 0.8 meter height. A ground reference plane is placed on the table, and uses a 0.1m insulation between the EUT and ground reference plane.

The minimum area of the ground reference plane is 1m*1m, and 0.65mm thick min, and projected beyond the EUT by at least 0.1m on all sides.

For input AC power ports:


The EUT is connected to the power mains through a coupling device that directly couples the EFT/B interference signal.

Each of the line conductors is impressed with burst noise for 1 minute.

The length of the power lines between the coupling device and the EUT is 0.5m.

5.5.4 Deviation from Test Standard

No deviation

5.5.6 Test Result

Test Voltage	230Vac, 50Hz	Environmental Conditions	25°C, 47% RH
Tested by	Evan Cheng	Test Date	2019/09/12

Test Point		Test Level (kV)	Polarity (+/-)	Result
	L	1	+/-	А
	Ν	1	+/-	А
	PE	1	+/-	А
AC Power Port	L+N	1	+/-	А
	L+PE	1	+/-	А
-	N+PE	1	+/-	А
	L+N+PE	1	+/-	А

Note:

Criteria A: The EUT function was correct during the test.

5.6 Surge Immunity Test

5.6.1 Test Specification

Standard	EN 61000-4-5
	AC Power Ports:
	1.2/50 µs Open Circuit Voltage, 8/20 µs Short Circuit Current
	Outdoor symmetrically signal line:
Wave- Shape	10/700 µs Open Circuit Voltage, 5/320 µs Short Circuit Current
	Outdoor non-symmetrically signal line:
	Indoor symmetrically / non-symmetrically signal line (length > 30m):
	1.2/50 µs Open Circuit Voltage, 8/20 µs Short Circuit Current
	AC Power Ports:
	Line to line: ± 1 kV, Line to ground: ± 2 kV
	Outdoor symmetrically signal line:
Test Voltage	Line to ground: ±1kV
Test voltage	Outdoor non-symmetrically signal line:
	Line to ground: ± 1 kV, Line to line: ± 0.5 kV
	Indoor symmetrically / non-symmetrically signal line:
	Line to ground: ±0.5kV
Surge Input / Output	L1-L2, L1-PE, L2-PE
Polarity	Positive/Negative
Phase Angle	0°/90°/180°/270°
Pulse Repetition Rate	1 time / min. (maximum)
Times	5 positive and 5 negative at selected points

5.6.2 Test Instrument

Item	Equipment	Manufacturer	Model	Meter No.	Calibration Date
1	EMS Generator	HAEFELY	AXOS8	CT-1-059(1)	Aug. 01, 2019
2	Surge CDN	3cTest	CDN-405T8A1	CT-1-074(5)	Apr. 22, 2019

Note: 1. The calibration interval of the above test instruments is 12 months.

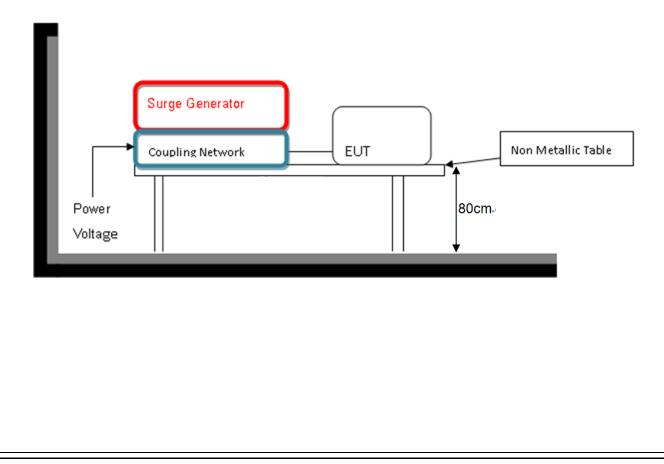
F

5.6.3 Test Procedure

The EUT is placed on a table that is 0.8 meter above a metal ground plane measured 1m*1m minimum and 0.65mm thick minimum and projected beyond the EUT by at least 0.1m on all sides. The length of power cord between the coupling device and the EUT shall be 2m or less.

For input AC power ports:

The EUT is connected to the power mains through a coupling device that directly couples the surge interference signal.


The surge noise shall be applied synchronized to the voltage phase at 0° , 90° , 180° , 270° and the peak value of the AC voltage wave. (Positive and negative)

Each of Line to Earth and Line to Line is impressed with a sequence of five surge voltages with interval of 1 minute.

5.6.4 Deviation from Test Standard

No deviation

5.6.5 Test Setup

5.6.6 Test Result

Test Voltage	230Vac, 50Hz	Environmental Conditions	24°C, 52% RH
Tested by	Evan Cheng	Test Date	2019/10/01

AC Power Port						
Test Point	Polarity		Te	st Voltage (l	Result	
Test Point	Phase	e (+/-)	0.5	1	2	Result
	0°	+/-	А	А	-	
L to N	90°	+/-	А	А	-	А
LION	180°	+/-	А	А	-	A
	270°	+/-	А	А	-	
	0°	+/-	А	А	А	
L to PE	90°	+/-	А	А	А	٨
LUFE	180°	+/-	А	А	А	A
	270°	+/-	А	А	А	
N to PE	0°	+/-	А	А	А	
	90°	+/-	А	А	А	
	180°	+/-	А	А	А	A
	270°	+/-	А	А	А	

Note:

Criteria A: The EUT function was correct during the test.

5.7 Continuous Conducted Disturbances (CS)

5.7.1 Test Specification

Standard	EN 61000-4-6
Frequency Range	0.15 MHz - 80 MHz
Voltage Level	3 V(rms)
Modulation	AM Modulation, 80%, 1 kHz Sine Wave
Frequency Step	1% of fundamental
Dwell Time	3 seconds

5.7.2 Test Instrument

Item	Equipment	Manufacturer	Model	Meter No.	Calibration Date
1	Coupling clamp according to IEC 6100-4-6	FRANKONIA	EMCL-20	CT-1-049	Apr. 25, 2019
2	CDN for power supply lines	FRANKONIA	CDN M2+M3	CT-1-054	Apr. 26, 2019
3	6 dB Attenuator	BIRD	75-A-FFN-06	CT-1-056	Apr. 25, 2019
4	Compact Immunity Test System acc	FRANKONIA	CIT-10/75	CT-1-057	Apr. 24, 2019
5	CDN for screened lines	FRANKONIA	RJ45S	CT-1-052(1)	May 20, 2019
6	50ohm Termination	N/A	N/A	CT-1-065-2	Apr. 25, 2019
7	Measurement Software	HUBERT	Ver: 1.1.2	N/A	No calibration request

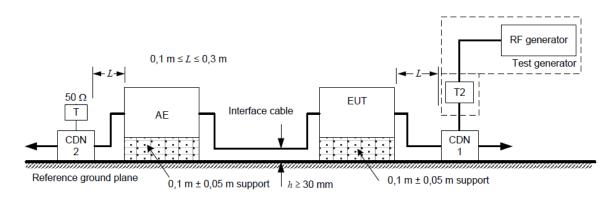
Note: 1. The calibration interval of the above test instruments is 12 months.

5.7.3 Test Procedure

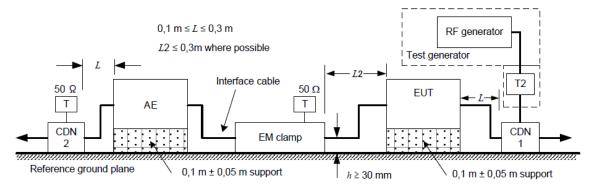
The EUT is placed on 0.1m insulation table between the EUT and ground reference plane.

For input AC power ports:

The EUT is connected to the power mains through a coupling and decoupling networks for power supply lines. And directly couples the disturbances signal into EUT.


Auxiliary equipment (AE) required for the defined operation of the EUT according to the specifications of the product committee.

5.7.4 Deviation from Test Standard


No deviation

5.7.5 Test Setup

The interface cable is set at 1 m if possible.

a) Schematic setup for a 2-port EUT connected to only 1 CDN

Note:

T: Termination 50 Ω

T2: Power attenuator (6 dB)

CDN: Coupling and decoupling network

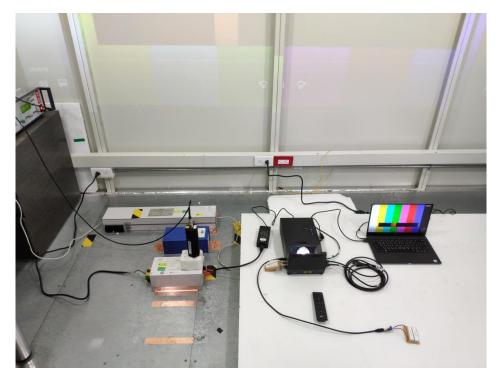
Injection clamp: current clamp or EM clamp

5.7.6 Test Result

Test Voltage	230Vac, 50Hz	Environmental Conditions	25°C, 46% RH
Tested by	Evan Cheng	Test Date	2019/09/29

Frequency Range (MHz)	Tested Port	Injection Method	Test Level (V _{r.m.s.})	Modulation	Result
0.15 - 80	AC Power	CDN-M2+ M3 (M3)	3	80% AM, 1kHz	А

Note:


Criteria A: The EUT function was correct during the test.

Report No: WD-EE-R-190581-B1

5.7.7 Photographs of Test Configuration

5.8 Voltage Dips & Short Interruptions

5.8.1 Test Specification

Basic Standard	EN 61000-4-11		
Test Level	Voltage Dips: 0% residual for 0.5 cycle 0% residual for 1 cycle 70% residual for 25 cycles Voltage Interruptions: 0% residual for 250 cycles		
Test Duration Time	Minimum 3 test events in sequence		
Interval between Event	Minimum 10 seconds		
Phase Angle	0°/45°/90°/135°/180°/225°/270°/315°		
Test Cycle	3 times		

5.8.2 Test Instrument

Item	Equipment	Manufacturer	Model	Meter No.	Calibration Date
1	EMS Generator	Thermo	EMC Pro	CT-1-030	Apr. 28, 2019
2	Measurement Software	CEWare32	Ver: 4.1	N/A	No calibration request

Note: 1. The calibration interval of the above test instruments is 12 months.

Report No: WD-EE-R-190581-B1

5.8.3 Test Procedure

Before starting the test of a given EUT, a test plan shall be prepared.

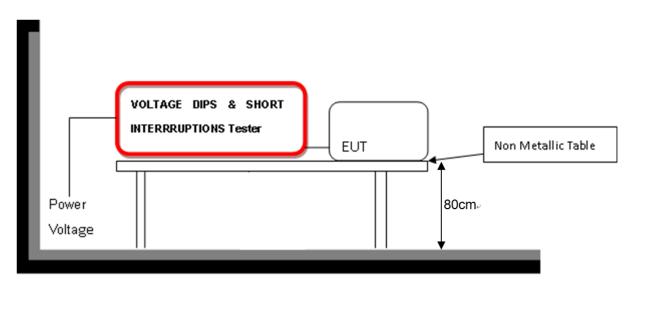
The test plan should be representative of the way the system is actually used.

Systems may require a precise pre-analysis to define which system configurations must be tested to reproduce field situations.

Test cases must be explained and indicated in the Test report.

It is recommended that the test plan include the following items:

- the type designation of the EUT;
- information on possible connections (plugs, terminals, etc.) and corresponding cables, and peripherals;
- input power port of equipment to be tested;
- representative operational modes of the EUT for the test;
- performance criteria used and defined in the technical specifications;
- operational mode(s) of equipment;
- description of the test set-up.


If the actual operating signal sources are not available to the EUT, they may be simulated.

For each test, any degradation of performance shall be recorded. The monitoring equipment should be capable of displaying the status of the operational mode of the EUT during and after the tests. After each group of tests, a full functional check shall be performed.

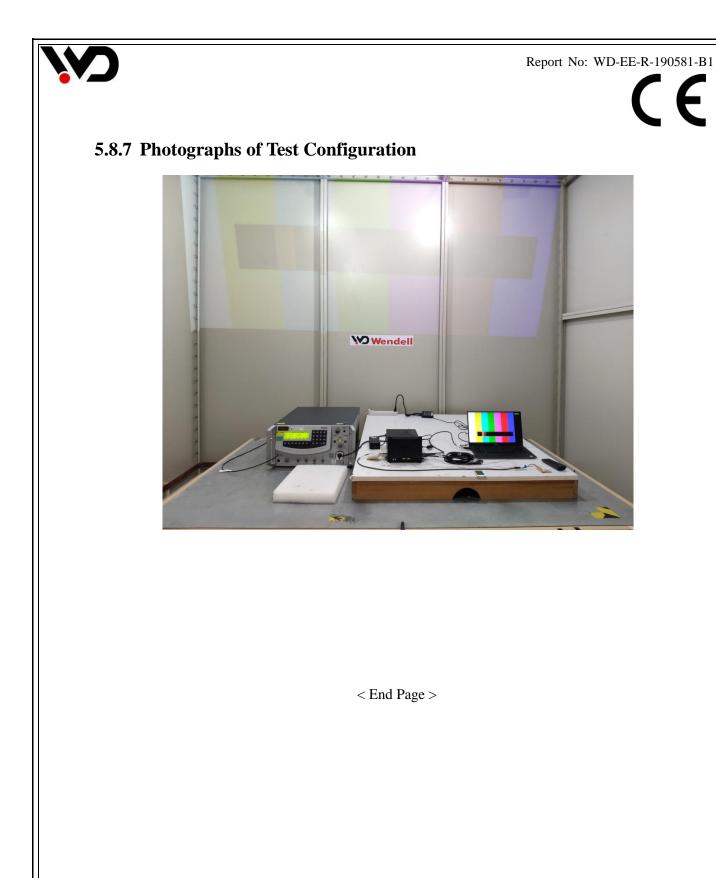
5.8.4 Deviation from Test Standard

No deviation

5.8.5 Test Setup

5.8.6 Test Result

Test Voltage	100-240Vac, 50Hz	Environmental Conditions	25°C, 50% RH
Tested by	Evan Cheng	Test Date	2019/09/12


230Vac, 50Hz			
Test Item	% Residual	Duration (Period)	Result
Voltage Dips	0	0.5	А
	0	1	А
	70	25	А
Voltage Interruptions	0	250	А

240Vac, 50Hz			
Test Item	% Residual	Duration (Period)	Result
Voltage Dips	0	0.5	А
	0	1	А
	70	25	А
Voltage Interruptions	0	250	А

100Vac, 50Hz			
Test Item	% Residual	Duration (Period)	Result
Voltage Dips	0	0.5	А
	0	1	А
	70	25	А
Voltage Interruptions	0	250	А

Note:

Criteria A: The EUT function was correct during the test.

